Lollar Pickups Blog

Welcome to the Lollar Pickups Blog, where we share in-depth information and stories about the pickups we build.

Best Selling Lollar Strat Style Pickups

Customers frequently ask us what our best-selling stock Lollar pickups are. In fact, this is one of our most frequently asked questions. Usually something to the effect of, “So what seems to be the most popular?” And, “What do most players order?”

So we thought it made sense to share that with you. For the next few blog postings we will talk a little about some of our top selling pickups. We will start with the Lollar Strat-style pickups.

The Lollar Sixty-Four (formerly called Vintage Blackface®) pickups for Strat are our most popular stock Strat pickup. Many players find the Sixty-Four set to be one of our most versatile. Clear and articulate when played clean, while at the same time offering a warmth and punchiness that make the Lollar Sixty-Four set a favorite.

Another top selling Lollar stock Strat set is a combination set we refer to as our “Special Blonde” set. The Lollar Special Blonde Strat set is a mixture of Lollar Vintage Blonde® Strat pickups in the neck and the middle positions, and the Lollar Special S Series® strat pickup in the bridge position. This combination gives many players the “best of both worlds.” The Lollar Vintage Blonde® neck and middle offer a bit more sparkle, chime, and top end bloom. At the same time, the slightly higher output Lollar Special S Series® bridge is just a bit darker and rounder than our other Strat style bridges. In most cases this helps lessen that typical Strat “ice pick” bridge sound.

The Lollar Special Blonde Strat set is interesting for yet another reason: Nash Guitars. Basically, if you wanted to order what you hear in a Nash Strat, you would want to order a Lollar Special Blonde Strat set. For more detail on the Nash Strat set, take a look at this previous Lollar Blog posting about Lollar pickups and Nash guitars.

One last point to make about best-selling Lollar Strat pickups: flat pole versus staggered pole pieces. When customers ask for our recommendation we strongly recommend flat pole pieces. For more detail on why we recommend the flat poles, follow this link to read an article about flat-pole versus staggered-pole pickups. Generally speaking, about 10% of the Strats we sell are staggered pole sets. In other words, about 90% of the time our customers prefer flat pole Strat pickups. Next week we’ll talk about best selling Lollar Tele style pickups.

Temperature and Guitar Pickup DC Resistance

This is a follow-up to our previous Blog entitled, “How Important is Guitar Pickup DC Resistance?” 

We decided to further demonstrate an important property of guitar pickup DC resistance.  That is, how temperature can affect the DC resistance reading on the SAME pickup.

So we did a simple experiment for you.  This will help demonstrate the point.   

We took the SAME pickup, a 2009 Lollar Vintage T Series bridge, and placed it in three different temerature settings and photographed the results.  As you will see, the same pickup will have different Ohm meter readings when the pickup’s temperature changes.

Here goes:

Setting Number 1 – Room Temperature

This particular Lollar Vintage T Series bridge reads a little over 7.1K at 68 degrees fahrenheit.
This particular Lollar Vintage T Series bridge reads a little over 7.1K at 68 degrees fahrenheit.

Here you will find our stock Lollar Vintage T Series bridge (one of our most popular, by the way).  The DC resistance is taken at room temperature, as indicated by the thermometer.

Setting Number 2 – Warm

This same Lollar Vintage T Series bridge has a reading of almost 7.9K after it has been warmed up for about an hour.
This same Lollar Vintage T Series bridge has a reading of almost 7.9K after it has been warmed up for about an hour.

This next photo shows a higher DC resistance reading, taken on the very same Lollar T Series bridge pickup.  We let this pickup sit at the warming station for about an hour.  (We warm all of the pickups at the warming station before they are immersed in the molten wax at the potting station.)

Setting Number 3 – Cold

Now this same Lollar Vintage T Series bridge has a reading of just under 6.4K - it has been sitting in the refrigerator.
Now this same Lollar Vintage T Series bridge has a reading of just under 6.4K – it has been sitting in the refrigerator.

This final photo shows how a colder temperature affects the DC resistance.  We let the same Lollar Vintage T Series bridge pickup sit in the refrigerator for about an hour. You can see how lowering the temperature of the pickup also lowers the DC resistance reading.

How Important is Guitar Pickup DC Resistance?

There is quite a bit of misunderstanding about the use of DC resistance as a measurement of a guitar pickup’s output.  DC resistance (kΩ) is a handy but rough measure of a pickup’s output.  It is most useful for making general comparisons, but not taken much beyond that.

We say this because there are a number of variables that can affect DC resistance.  In fact, two of these factors can actually change the DC resistance reading on the SAME guitar pickup.

Temperature, specifically, will do this.  The very same pickup will have a higher DC resistance reading when the pickup is warmer, and a lower DC resistance reading when the pickup is cooler.  For example,  if the pickup has been sitting in a sunny window, the dc resistance will read higher.  If you took that same pickup and stored it in your basement / practice room and it was cooler in temp, the DC resistance would read lower.

The dc resistance will also read lower once the pickup has been installed into your guitar.

Another factor is variation of copper wire.  Although it’s manufactured to rigorous specs, variation exists between spools of copper wire—including spools made by the same manufacturer and from the same lot number.  A microscopic size variance that’s still within specs can affect DC resistance.

Equipment calibration can vary between ohm meters and can also change if your battery is low.

We get phone calls from customers who have questions about the DC resistance their new guitar pickup is showing – at that moment – and the DC resistance values that we publish on our web site. They want to know if there is something “wrong” with the new pickup.

We tell them that unless they are taking that reading at exactly the same temperature as we did here in the shop, their pickup will read slightly differently.  More often than not, they will have just received the pickup, pulled it out of the box, and tested it moments after it has just been sitting in either a very cold or a very hot delivery truck.  

Another thing to keep in mind is that the DC resistance values we publish are midpoints.  The testing was done on average size production runs.  Each of the pickups in those runs had a different reading.  The values we publish are the midpoints of those groups of readings.

Follow this link to see a full listing of Lollar Pickups DC resistance.

Inductance, string vibration, and pickup position

Here is a question we received from a customer. It is a good one, so here you go….

The customer wrote…

“I read the following excerpt from your tech info page:

Inductance (H): When iron or an iron-based (ferrous) metal moves within a magnetic field, it has the capacity to induce a current in any conductive material also in that magnetic field (i.e. the copper wire coil). This is inductance—a measure of the physical property to induce a current. In general, the greater the inductance, the greater the output and greater the bass response.

From the above I would assume my bridge pickup is bassier than the neck because it is higher inductance. But the opposite is true on my guitar. The neck is bassier and the bridge cuts. I love my set up, I am trying to develop a greater understanding [of inductance].

Best, Mr. X”

The statement about inductance is true if everything else is equal. If you put your bridge pickup in the neck position it would sound bassier than the neck pickup in the neck position. If you put the neck pickup in the bridge position it would have less bass than the bridge pickup in the bridge position. This would be the answer, based solely on the property of inductance as described above.

However, there are two related parts of the answer as to why the neck and bridge pickups sound different from each other.

Take a look at this diagram which represents string vibration:

The neck pickup sits closest to the center of the wave pattern
The neck pickup sits closest to the center of the wave pattern

The first part of the answer has to do with where the pickup is located, relative to the string vibration.

The amplitude of the fundamental is greatest at the center point between the nut and bridge. The greater the amplitude of the string vibration, the more the magnetic field of the pickup is disturbed which generates a higher voltage in the coil. More voltage = more output or volume.

The neck pickup sits closest to the full arch of the wave pattern, but the bridge is positioned where it senses only a small fraction of the arch. In other words, if you pick the string near the end of the fingerboard you’ll get a smooth bassy sound. That is what the neck pickup is sensing. If you pick the strings about 1/4″ in front of the bridge, you’ll get a bright thin sound. That is what your bridge is sensing.

The second part of the answer has to do with “how much” of any one frequency the pickup is sensing. Have another look at the diagram above.

The portion of the diagram showing the string vibrating like one big arc represents the fundamental. Your neck pickup sits close to the center of that arc, so you get more fundamental which is the fullest bassiest tone (the fundamental is the note you are actually playing). Strings vibrate in many patterns at the same time, so not only is the fundamental present but many higher overtones are also being generated at the same time.

Now if you look at the area of the diagram that is closer to the bridge, you’ll notice there are many shorter wavelengths clustered together. You’ll also see that it senses a larger proportion of the higher frequency multiples of the note you are playing. Mostly the 4th 5th, 6th and 7th harmonics. In other words, all of the patterns are happening at the same time, but the fundamental and the 2nd and 3rd harmonics are less predominant.

Guitar Pickup “Lifespan”

Two questions we are frequently asked are: Do vintage guitar pickups have a “lifespan?” and Can the sound quality of vintage guitar pickups change or degrade over time?

In most cases the tone does not appreciably degrade if the coil is still intact. However there are two main factors that can affect your guitar pickup over time. A change in either of these can cause a loss or change in the tone of your guitar pickup. We will discuss these factors one at a time.

First, let’s talk about how guitar pickup magnets can be affected over time.

Some pickup designs used magnets that were not made of a permanent magnetic alloy. A prime example is the Rickenbacker horseshoe pickup. These magnets—which are the “horseshoes” themselves—often go dead, or almost dead. Once they lose their magnetic charge to a sufficient degree, the result will be a loss of output and frequency response.

The U-shaped metal "horseshoes" are the magnets for this Lollar horseshoe style pickup.
The U-shaped metal “horseshoes” are the magnets in this Lollar horseshoe style pickup.

The second point about guitar pickup magnets involves AlNiCo based magnet materials. It is important to note that AlNiCo magnets can be easily degaussed, and the way many pickup designs are made allows the AlNiCo to degauss from 20 to 30%. AlNiCo magnets can also be degaussed by rubbing them with a piece of steel, or by placing another magnet in close proximity. As a side note, from time to time we’ll hear from a customer whose pickup “suddenly had very little output and frequency response.” In a couple of cases it happened “just after a break” between sets at their gig. Guess where these customers set their guitars during their break? Right against the back side of a large speaker cabinet, near the large magnet of its speaker cone. Immediate de-gaussing!

Now let’s talk about how guitar pickup coils are affected over time.

There is a life expectancy for many older pickup designs. For example, P-90’s had a coil former (bobbin) made of a plastic material that can degrade over time. In these cases the bobbin will eventually disintegrate, leaving less substantial material to support the coil. This allows the coil to shift or slump, which affects the sound quality. Gibson also made pickups out of a tortoiseshell plastic. This material can also degrade and fall apart.

Fender pickups that were not wax potted can eventually come apart. In fact, many vintage pickups were not potted with wax or shellac.

This guitar pickup coil was not protected with wax or shellac. This exposed the coil to damage if bumped or dropped.
This guitar pickup coil was not protected with wax or shellac. This exposed the coil to damage if bumped or dropped.

If a pickup is not potted with wax or protected with shellac, the pickup coil is more vulnerable to damage or movement of the thin copper coil wire. If the pickup gets bumped or dropped, the coil can shift and collapse making it much looser and more microphonic. This is very common and is one of the reasons why we pot just about everything we make, even if it’s only for 10 seconds. My pickups will still be as microphonic as I like to make them, but the coil will be far less likely to shift and become loose over time. Once a vintage pickup coil becomes loose it can get progressively worse very quickly.

© Copyright 2024 Lollar Pickups. All Rights Reserved.